Discrete Riemann Surfaces and the Ising model

نویسنده

  • Christian Mercat
چکیده

We define a new theory of discrete Riemann surfaces and present its basic results. The key idea is to consider not only a cellular decomposition of a surface, but the union with its dual. Discrete holomorphy is defined by a straightforward discretisation of the Cauchy-Riemann equation. A lot of classical results in Riemann theory have a discrete counterpart, Hodge star, harmonicity, Hodge theorem, Weyl’s lemma, Cauchy integral formula, existence of holomorphic forms with prescribed holonomies. Giving a geometrical meaning to the construction on a Riemann surface, we define a notion of criticality on which we prove a continuous limit theorem. We investigate its connection with criticality in the Ising model. We set up a Dirac equation on a discrete universal spin structure and we prove that the existence of a Dirac spinor is equivalent to criticality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Period Matrices of Polyhedral Surfaces

Finding a conformal parameterization for a surface and computing its period matrix is a classical problem which is useful in a lot of contexts, from statistical mechanics to computer graphics. The 2D-Ising model [Mer01, CSM02, CSM03] for example can be realized on a cellular decomposition of a surface whose edges are decorated by interaction constants, understood as a discrete conformal structu...

متن کامل

Discrete Period Matrices and Related Topics

The notion of discrete Riemann surfaces was defined in [1, 2]. The interesting paper [3] initiated a renewed interest in the subject. In their paper, R. Costa-Santos and B. McCoy observed numerically that certain pfaffians intervening in a dimer or critical Ising model converge at the thermodynamic limit to a certain (power of a) theta function at the origin. They computed the period matrix nee...

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Bass' identity and a coin arrangements lemma

There is no doubt that the Riemann zeta function is a function of great significance in number theory because of its connection to the distribution of prime numbers. The Ihara zeta function was first introduced by Ihara [5]. This zeta function is associated with a finite graph and aperiodic closed walks in it. Bass’ identity [1] shows that the Ihara zeta function is a determinant. It is shown i...

متن کامل

Faddeev-Volkov solution of the Yang-Baxter Equation and Discrete Conformal Symmetry

The Faddeev-Volkov solution of the star-triangle relation is connected with the modular double of the quantum group Uq(sl2). It defines an Ising-type lattice model with positive Boltzmann weights where the spin variables take continuous values on the real line. The free energy of the model is exactly calculated in the thermodynamic limit. The model describes quantum fluctuations of circle patte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009